2.53 A rod consisting of two cylindrical portions AB and BC is restrained at both ends. Portion AB is made of steel ($E_s = 29 \times 10^6$ psi, $\alpha_s = 6.5 \times 10^{-6}{}^\circ$F) and portion BC is made of brass ($E_b = 15 \times 10^6$ psi, $\alpha_b = 10.4 \times 10^{-6}{}^\circ$F). Knowing that the rod is initially unstressed, determine (a) the normal stresses induced in portions AB and BC by a temperature rise of 65°F, (b) the corresponding deflection of point B.

2.56 For the rod of Prob. 2.53, determine the maximum allowable temperature change if the stress in the steel portion AB is not to exceed 18 ksi and if the stress in the brass portion CB is not to exceed 7 ksi.

SOLUTION

Allowable force in each portion

$AB: \sigma_{AB} = -18 \times 10^3$ psi, $A_{AB} = \frac{\pi}{4} d_{AB}^2 = \frac{\pi}{4} (1.25)^2 = 1.2272$ in2

$P = \sigma_{AB} A_{AB} = (-18 \times 10^3)(1.2272) = -22.090 \times 10^3$ lb.

$BC: \sigma_{BC} = -7 \times 10^3$ psi, $A_{BC} = \frac{\pi}{4} d_{BC}^2 = \frac{\pi}{4} (2.25)^2 = 3.9761$ in2

$P = \sigma_{BC} A_{BC} = (-7 \times 10^3)(3.9761) = -27.833 \times 10^3$ lb.

Smaller absolute value governs: $P = -22.090 \times 10^3$ lb.

Deformation due to P

$\delta_p = \frac{PL_{AB}}{E_s A_{AB}} + \frac{PL_{BC}}{E_b A_{BC}} = \frac{(22.090 \times 10^3)(12)}{(29 \times 10^6)(1.2272)} - \frac{(22.090 \times 10^3)(15)}{(15 \times 10^6)(3.9761)}$

$= -13.004 \times 10^{-3}$ in

Free thermal expansion

$\delta_T = L_{AB} \alpha_s (\Delta T) + L_{BC} \alpha_b (\Delta T) = (12)(6.5 \times 10^{-6}) (\Delta T) + (15)(10.4 \times 10^{-6}) (\Delta T)$

$= (234 \times 10^{-6}) (\Delta T)$

Total deformation is zero

$\delta_T + \delta_p = (234 \times 10^{-6}) (\Delta T) - 13.004 \times 10^{-3} = 0$

$\Delta T = 55.6 {}^\circ$ F