Mechanical and Materials Engineering

George S. Dulikravich, Chairperson and Professor
Arvind Agarwal, Assistant Professor and Graduate Program Director
Wei-Yu Bao, Coordinator of Research
Yiding Cao, Associate Professor
Wonbong Choi, Associate Professor
M. Ali Ebadian, Professor
Dennis Fan, Assistant Professor
Gordon Hopkins, Professor and Dean Emeritus
W. Kinzy Jones, Professor and Director, Advanced Materials Engineering Research Institute
Sukky Jun, Assistant Professor
Hexiong Yang, Associate Professor
Cesar Levy, Professor
Norman Munroe, Associate Professor and Associate Director of Research, Applied Research Center
Vish Prasad, Distinguished Professor, Executive Dean, College of Engineering and Computing
Diana Rincon, Assistant Professor
Surenda Saxena, Professor
Carmen Schenck, Advisor/Instructor
Jun Sun, Visiting Instructor
Ibrahim Tansel, Associate Professor
Yong Xin Tao, Associate Professor and Undergraduate Program Director
Sabri Tosunoglu, Associate Professor
Kuang Hsi Wu, Professor
Hexiong Yang, Associate Professor

Mechanical and Materials Engineering Department Mission Statement

The Mechanical and Materials Engineering Department at Florida International University (FIU) offers a curriculum designed to give the student a thorough understanding of the basic laws of science and simultaneously to stimulate and develop creative thinking, a professional attitude, economic judgement and environmental consciousness. The aim is to develop the student’s potential to the fullest, to prepare the student for superior performance as a mechanical engineer, and to provide the student with the fundamental principles necessary for pursuing advanced study in the diverse fields of engineering, science and business.

The Mechanical Engineering Program Educational Objectives listed below will graduate students who:

1. Are prepared for professional practice in entry-level engineering positions or to enroll in further engineering degree programs
2. Are prepared for successful careers and possible leadership positions as a result of teaming, communication and problem-solving skills learned in our program.
3. At all stages of their careers, will be engaged in activities that demonstrate a commitment to and a desire for ongoing personal and professional growth and learning.

A graduate of the Mechanical Engineering program should possess the following, which are also established as the Mechanical Engineering Program Educational Objectives:

1. Broad and in-depth knowledge of engineering science and principles in the following three major branches of Mechanical Engineering: Fluids/Thermal Sciences and Energy Systems, Mechanics and Materials, and Design and Manufacturing for effective engineering practice, professional growth and as a base for lifelong learning.
2. Hands-on experience with available instruments and laboratory techniques to bridge classroom learning with practical "real-life" problems.
3. The ability to utilize analytical and experimental methods and modern computer technology for decision making, engineering design, and to solve realistic engineering problems.
4. The ability to work effectively with others in a team while simultaneously maintaining independent and creative thought.
5. The ability to articulate technical matters using verbal, written and graphic techniques.
6. An adequate background to pursue graduate studies in engineering and other fields.
7. A sense of professional and social responsibility, including a commitment to protect both occupational and public health and safety, developed through consideration of moral, social, and ethical paradigms related to the engineering profession and practice.

The Program Outcomes listed below have been established based on the Mechanical Engineering Program Educational Objectives. At the time of graduation, a Mechanical Engineering student should have:

a. Ability to apply knowledge of mathematics including statistics, multivariable calculus, and differential equations, science including physics, and engineering principles.

b. Ability to design and conduct experiments, as well as to analyze and interpret data.

c. Ability to design a system, component, or process to meet desired needs.

d. Ability to function on multi-disciplinary teams.

e. Ability to identify, formulate, and solve engineering problems.

f. Understanding of professional and ethical responsibility.

g. Ability to communicate effectively.

h. Broad education necessary to understand the impact of engineering solutions in a global and societal context.

i. Recognition of the need for, and an ability to engage in life-long learning.

j. Knowledge of contemporary issues.

k. Ability to use the techniques, skills and modern engineering tools necessary for engineering practice, and are expected to be met for all graduates receiving the BSME degree. These objectives were established following the requirement set forth in the EC-2000 Engineering Criterion 3. These outcomes are defined as follows:

a. Ability to apply knowledge of mathematics, science, and engineering.

b. Ability to design and conduct experiments, as well as to analyze and interpret data.

c. Ability to design a system, component, or process to meet desired needs.

d. Ability to function on multidisciplinary teams.

e. Ability to identify, formulate, and solve engineering problems.
f. Understanding of professional and ethical responsibility;
g. Ability to communicate effectively;
h. Broad education necessary to understand the impact of engineering solutions in a global and societal context;
i. Recognition of the need for, and an ability to engage in, lifelong learning;
j. Knowledge of contemporary issues;
k. Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice;
l. Knowledge of probability and statistics, including applications to mechanical engineering;
m. Knowledge of mathematics and basic and engineering science necessary to carry out analysis and design appropriate to mechanical engineering; and the
n. Ability to apply advanced mathematics through multivariable calculus and differential equations.

Based on the goals set above the academic program provides a well-balanced curriculum in the following three major areas of Mechanical Engineering:
- Fluid/Thermal Science
- Mechanics and Materials Design, Robotics and Manufacturing

Further specializations in any of the following areas may be obtained by the proper choice of electives:
- Energy Systems
- Heating, Ventilation, and Air Conditioning
- Mechanics and Material Sciences
- Manufacturing
- Robotics
- Design
- Manufacturing and Automation Systems
- Robotics and Mechatronics
- Mechanical Design
- Computer-Aided Engineering
- Multidisciplinary Design Optimization
- Multidisciplinary Computational Analysis
- Finite Element Analysis
- Environmental and Waste Management

Further specializations in any of the following areas may be obtained by the proper choice of electives:
- Energy Systems
- Heating, Ventilation, and Air Conditioning
- Mechanics and Material Sciences
- Manufacturing
- Robotics
- Design
- Manufacturing and Automation Systems
- Robotics and Mechatronics
- Mechanical Design
- Computer-Aided Engineering
- Multidisciplinary Design Optimization
- Multidisciplinary Computational Analysis
- Finite Element Analysis
- Environmental and Waste Management

A Bachelor’s degree in Mechanical Engineering provides students with the background suitable for immediate employment in engineering industries, as well as excellent preparation for graduate studies in Engineering, Medicine, Law, or Business Administration.

Bachelor of Science in Mechanical Engineering

Common Prerequisites:

(Math/Science Hours: 32)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 1045</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 1045L</td>
<td>General Chemistry Lab I</td>
<td>1</td>
</tr>
<tr>
<td>MAC 2311</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MAC 2312</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MAC 2313</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MAP 2302</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>EGM 3311</td>
<td>Analysis of Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>PHY 2048</td>
<td>Physics with Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 2048L</td>
<td>General Physics Lab I</td>
<td>1</td>
</tr>
<tr>
<td>PHY 2049</td>
<td>Physics with Calculus II</td>
<td>4</td>
</tr>
</tbody>
</table>

Degree Program Hours: 128

The qualifications for admissions to the Department of Mechanical and Materials Engineering are the same as for admission to the School of Engineering.

The academic program is designed to satisfy the criteria outlined by the Accreditation Board for Engineering and Technology (ABET), as well as to meet the State of Florida’s articulation policy. Entering freshmen at FIU should seek advisement from the Undergraduate Studies Office as well as from the Mechanical and Materials Engineering Department’s office of advisement.

Lower Division Preparation

Lower division requirements include at least 60 hours of pre-engineering credits (see the Undergraduate Studies portion of this catalog for specific requirements). These courses include Software for Mechanical Design, Calculus I, II, III, Differential Equations, Analysis of Engineering Systems, Chemistry I and Lab, Calculus based Physics I & II and labs, 1-2 semesters of English and 2-2 other Gordon rule writing courses. (Engineering, Graphics or CAD (Introduction to CAD for Mechanical Engineers is a required prerequisite unless previously taken in high school). A minimum grade of a “C” is required in every course of the Mechanical Engineering curriculum, all writing courses, all calculus courses, Differential Equations, Analysis of Engineering Systems, both Physics classes and Chemistry. In addition, both transfer students, who have not completed their core curriculum at the transfer institution, and FIU Freshmen must take a combination of social sciences and humanities that fulfill the state general education requirements, the FIU University Core Curriculum Requirements, and whose topics also complement the goals and objectives of the College of Engineering and Computing (including economic, environmental, political, and/or social issues. See semester-by-semester sample program for courses that fulfill this requirement). Students must make up any missing prerequisites before they will be allowed to begin taking certain engineering courses (see course listing for required pre/corequisites).

Other Requirements

Students must meet the University Foreign Language Requirement. Students must pass the CLAST or have it waived. Students who enter the university with fewer than 36 semester hours must satisfy a summer residency requirement by taking a minimum of 9 credit hours during the summer semester while at FIU. Students must meet all of the state and university requirements in order to graduate.

The minimum requirements for graduation in Mechanical Engineering consist of two parts: 1) Mathematics, Basic Sciences, Humanities and Social Science requirements, and 2) Engineering Sciences, Engineering Design, Laboratory and Elective requirements.

Mechanical Engineering Curriculum

Engineering Science, Engineering Design, Laboratory and Elective semester credit hour requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN 1100</td>
<td>Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>EML 2030</td>
<td>Software for Mechanical Design</td>
<td>3</td>
</tr>
<tr>
<td>EML 2032</td>
<td>Programming for Mechanical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>EML 3XXX</td>
<td>Simulation Software for Mechanical</td>
<td>3</td>
</tr>
</tbody>
</table>
Students failing to maintain a major overall GPA of 2.0 must register for EML 4905 to complete the project. The senior project begins during this course. The next semester the student of his/her senior year, the student must register for EML 4905 to complete the project.

Approved Design Electives:
- EGM 4350: Finite Element Analysis in Mechanical Design
- EML 4503: Production Machine Modeling and Design
- EML 4525: Mechanical Design Synthesis and Analysis
- EML 4535: Mechanical Computer Aided Design
- EML 4561: Introduction to Electronic Packaging
- EML 4585: Design of Biomedical Systems and Devices

Approved Math/Statistics Electives:
- EIN 3390: Manufacturing Processes
- EML 3126: Transport Phenomena
- EML 3126L: Transport Phenomena Lab
- EML 3343: Thermodynamics I
- EML 3301: Thermodynamics II
- EML 3262: Kinematics & Mechanism Design
- EML 4220: Mechanical Vibrations
- EML 3222: System Dynamics
- EIN 3354: Engineering Economy
- EML 4312: Automatic Control Theory
- EML 4140: Heat Transfer
- EIN 3390L: Manufacturing Processes Lab
- EEL 3003: Electrical Engineering I
- EEL 3111L: Circuits Lab
- EML 3301L: Instrumentation & Measurement Lab
- EML 4906L: Mechanical Lab
- EML 4706: Design of Thermal and Fluid Systems
- EML 4804: Introduction to Mechatronics
- EML 4806: Modeling and Control of Robots
- EML 4551: Design Project Organization
- EML 4905: Senior Design Project
- EML 4711: Kinematics & Mechanism Design
- EML 4525: Mechanical Design Synthesis and Design
- EML 4421: Internal Combustion Engines
- EML 4525: Mechanical Design Synthesis and Analysis
- EML 4611: Principles of Refrigerating and Air Conditioning
- EML 4601: Principles of Refrigerating and Air Conditioning
- EML 4608C: Mechanical Systems in Environmental Control
- EML 4702: Fluid Dynamics
- EML 4711: Gas Dynamics
- EML 5103: Intermediate Thermodynamics
- EML 5104: Classical Thermodynamics
- EML 5152: Intermediate Heat Transfer
- EML 5606C: Advanced Refrigeration and A/C Systems
- EML 5615C: CAD in Air Conditioning
- EML 5708: Advanced Design of Thermal and Fluid Systems
- EML 5709: Intermediate Fluid Mechanics

Laboratories

Over and above the laboratory requirements in Physics and Chemistry, the program consists of six semester hours of required Engineering laboratory work. The students are assigned two hours of laboratory work (one hour in Instrumentation and Measurement Lab and one hour in Mechanical Lab) which are specifically devoted to solving design problems using experimental methods. The laboratory experience includes the following areas: Machining, Circuits, Fluid Mechanics, Mechanics of Materials and Materials Testing, Applications in Fluid and Thermal Science, and Instrumentation and Measurement.

Electives

Three Four concentrations available within the Mechanical Engineering program with some of their elective offerings are listed below.

Fluids/Thermal Sciences and Energy Systems
- EGM 4350: Finite Element Analysis in Mechanical Design
- EML 3450: Energy Systems
- EML 4419: Propulsion Systems
- EML 4421: Internal Combustion Engines
- EML 4525: Mechanical Design Synthesis and Analysis
- EML 4601: Principles of Refrigerating and Air Conditioning
- EML 4601L: Refrigeration and A/C Lab
- EML 4603: Air Conditioning Design
- EML 4608C: Mechanical Systems in Environmental Control
- EML 4702: Fluid Dynamics
- EML 4711: Gas Dynamics
- EML 5103: Intermediate Thermodynamics
- EML 5104: Classical Thermodynamics
- EML 5152: Intermediate Heat Transfer
- EML 5606C: Advanced Refrigeration and A/C Systems
- EML 5615C: CAD in Air Conditioning
- EML 5708: Advanced Design of Thermal and Fluid Systems
- EML 5709: Intermediate Fluid Mechanics
- EML 4350: Finite Element Analysis in Mechanical Design
- EML 4419: Propulsion Systems
- EML 4421: Internal Combustion Engines
- EML 4525: Mechanical Design Synthesis and Analysis
- EML 4601: Principles of Refrigerating and Air Conditioning
- EML 4601L: Refrigeration and A/C Lab
- EML 4603: Air Conditioning Design
- EML 4608C: Mechanical Systems in Environmental Control
- EML 4702: Fluid Dynamics
- EML 4711: Gas Dynamics
- EML 5103: Intermediate Thermodynamics
- EML 5104: Classical Thermodynamics
- EML 5152: Intermediate Heat Transfer
- EML 5606C: Advanced Refrigeration and A/C Systems
- EML 5615C: CAD in Air Conditioning
- EML 5708: Advanced Design of Thermal and Fluid Systems
- EML 5709: Intermediate Fluid Mechanics

Students must maintain and achieve a grade point average of 2.0 or better in those engineering courses to be used to satisfy BSME degree requirements. This "major GPA" is computed in the manner of the overall GPA. Courses that are excluded from the calculation of the overall GPA will also be excluded from the calculation of the major GPA. Students failing to maintain an overall GPA of 2.0 will be placed on major GPA probation, suspension, or dismissed from the University program according to the same criteria that are utilized with the overall GPA.

Students who are dismissed for the first time from the University due to low grades may appeal to the Dean for reinstatement. A second dismissal results in no possibility of reinstatement.
Mechanics, Materials and Design

EGM 3311 Analysis of Mechanical Systems 3
EGM 4610 Introduction to Continuum Mechanics 3
EGM 4350 Finite Element Analysis in Mechanical Design 3
EGM 5315 Intermediate Analysis of Mechanical Systems 3
EGM 5615 Synthesis of Engineering Mechanics 3
EGN 5367 Industrial Materials and Engineering Design 3
EMA 3066 Polymer Science and Engineering 3
EMA 4121 Physical Metallurgy 3
EMA 4121L Materials Laboratory 1
EMA 4223 Mechanical Metallurgy 3
EMA 5295 Principles of Composite Materials 3
EMA 5507C Analytical Techniques of Material Sciences 3
EMA 5935 Advanced Topics in Materials Engineering 3

EML 3222 System Dynamics 3
EML 3301C Instrumentation 3
EML 4260 Dynamics of Machinery 3
EML 4525 Mechanical Design Synthesis and Analysis 3
EML 4535 Mechanical Computer-Aided Design 3
EML 4561 Introduction to Electronic Packaging 3
EML 5125 Classical Dynamics 3
EML 5385 Identification Techniques of Mechanical Systems 3
EML 5530 Intermediate CAD/CAE 3
EML 5562 Advanced Electronic Packaging 3

Manufacturing and Robotics

Design, Robotics and Manufacturing

EIN 3600 Introduction to Robotics 2
EIN 4391 Product Design for Manufacturing and Automation 3
EIN 4395 Computer-Integrated Manufacturing 3
EML 4535 Mechanical Computer-Aided Design 3
EML 4561 Introduction to Electronic Packaging 3
EML 4806 Modeling and Control of Robots 3
EML 4809 Robot Design 3
EML 4823 Introduction to Sensors and Signal Processing 3
EML 5562 Advanced Electronic Packaging 3
EML 5808 Control Technology for Robotic Systems 3

Students are required to complete nine eleven credit hours of technical electives, three of which are approved design credits.

Students with special needs may take other elective courses (not listed above) with permission of the Mechanical Engineering Advisor. Students are not restricted to these four concentration areas but may choose courses, with the advisor’s consent, that will form a coherent concentration area. Special topics may be counted as an elective.

Mechanical Engineering Program Requirements—Freshman to Senior

First Semester: (17)
MAC 2311 Calculus I 4
CHM 1045 General Chemistry I 3
CHM 1045L General Chemistry I Lab 1
ENC 1101 Freshman Composition 3

Second Semester: (18)
MAC 2312 Calculus II 4
PHY 2048 Physics I with Calculus 4
PHY 2048L General Physics I Lab 1
ENC 1102 Literary Analysis 3
EGN 3365 Materials in Eng 3
EGN 1033 Technology, Humans and Society 3

Third Semester: (18)
MAC 2313 Multivariable Calculus 4
PHY 2049 Physics with Calculus II 4
PHY 2049L General Physics II Lab 1
EML 2032 Programming for Mechanical Engineers 3
EGN 3311 Statics 3
EML 3311 Analysis of Engineering Systems 3

Fourth Semester: (15)
MAP 2302 Differential Equations 3
EGN 3321 Dynamics 3
EGN 3343 Thermodynamics I 3
EML 3900 Manufacturing Processes 2
EML 3900L Manufacturing Processes Lab 1
Humanities with Writing* 3

Fifth Semester: (18)
EGM 3311 Analysis of Engineering Systems 3
EMA 3702 Mechanics and Materials Science 3
EMA 3702L Mechanics and Materials Science Lab 1
EML 3101 Thermodynamics II 3
EML 3126 Transport Phenomena 3
EML 3126L Transport Phenomena Lab 1
EML 3222 System Dynamics 3
EML 3390 Manufacturing Processes 2
EML 3390L Manufacturing Processes Lab 1
EEL 3003 Electrical Engineering I 3
EEL 3111L Circuits Lab 1

Sixth Semester: (16)
EML 3XXX Simulation Software for Mechanical Engineers 3
EML 4140 Heat Transfer 3
EML 3500 Mechanical Design I 3
EML 3262 Kinematics and Mechanisms Design 3
EML 3301L Instrumentation and Measurement Lab 1
EIN 3354 Engineering Economy 3
INP 2002 Introductory Industrial/Organization Psychology 3

or
ECO 2023 Principles of Microeconomics 3
ECO 2023 Principles of Microeconomics 3

or
ECO 2013 Principles of Macroeconomics 3

or
SYG 2010 Social Problems 3
Students, who pursue a BS degree and are in their first semester of the senior year, with at least a 3.25 GPA on both overall and upper division courses may apply to the department to enroll in the combined BS/MS program. Students must also submit an on-line application to the University Graduate School for admission to the MS program. Students applying to the combined program are not required to pay the application fee. In addition to the admission requirements of the combined BS/MS program, students must meet all the admission requirements of the University Graduate School.

Students enrolled in the program may count up to six credit hours of MME graduate courses as credits for both the BS and MS degrees. The combined BS/MS program has been designed to be a continuous program. During this combined BS/MS program, upon completion of all the requirements of the undergraduate program, students will receive their BS degrees. Students in this program have up to three major semesters to complete the master's degree after receipt of the bachelor's degree. Students who fail to meet this three-major-semester post BS requirement or who elect to leave the combined program at any time and earn only the BS degree will have the same access requirements to regular graduate programs as any other student, but will not be able to use the six credits in both the bachelor's and master's degrees.

For each of the graduate courses counted as credits for both BS and MS degree, a minimum grade of B is required. Students enrolled in the program may count up to six credit hours of MME graduate courses toward the elective engineering BS requirements as well as toward the MS degree. Only graduate courses with formal lectures can be counted for both degrees. The students are responsible for confirming the eligibility of each course with the undergraduate advisor.

Students interested in the program should consult with the undergraduate advisor on their eligibility to the program. The students should also meet the graduate advisor to learn about the graduate program and available courses before completing the application form and submitting it to the undergraduate advisor. Applicants will be notified by the department and the University Graduate School of the decision on their applications.

Combined BS/ MBA Program

Students, who pursue a BS degree and are in their first semester of the senior year, with at least a 3.3 GPA on both overall and upper division courses may, upon recommendation from three MME faculty members, apply to the department to enroll in the combined BS/MBA program. Students must also submit an on-line application to the University Graduate School for admission to the MBA program. Students applying to the combined program are not required to pay the application fee. In addition to the admission requirements of the combined BS/MBA program, students must meet all the admission requirements of the University Graduate School and those of the College of Business Administration.

The MBA curriculum at the Chapman Graduate School of business consists of 9 credit hours of pre-core courses, 31 credit hours of core courses, 3 credit hours...
of professional development seminars, and 12 credit hours of elective courses, for a total of 55 credit hours.

The pre-core of 9 credit hours may be considered for waiver based on prior course work or exemption exams. An evaluation will be conducted at the time of admission to determine eligibility for a waiver by the MBA program graduate advisor.

In addition, students can count up to three MME graduate courses as credits for both the BS electives and the MBA electives, for a total savings of 9 credit hours. The following is a list of eligible MME graduate courses:

EML 5XXX Professional Development and Leadership for Mechanical Engineers
EML 5XXX Special Projects in Mechanical Engineering Design and Business Development*
EML 6908 Independent Studies*

* These courses should have management, decision making and/or cost estimating components.

The combined BS/MBA program has been designed to be a continuous program. During this combined BS/MBA program, upon completion of all the requirements of the undergraduate program, students will receive their BS degrees. Students may also elect to permanently leave the combined program at any time and earn only the BS degree. Students who elect to leave the combined program and earn only the BS degree will have the same access requirements to regular graduate programs as any other student, but will not be able to use the 9 credits in both the BS and MBA degrees.

For each of the graduate courses counted as credits for both BS and MBA degrees, a minimum grade of B is required. Students are responsible for confirming the eligibility of each course with the undergraduate advisor.

Students interested in the program should consult with the undergraduate advisor on their eligibility to the program. The students should also meet the MBA program graduate advisor to learn about the graduate program and available courses before completing the application form and submitting it to the undergraduate advisor. Final decision for admission to the MBA program will be made by the University Graduate School of the College of Business Administration. Applicants will be notified by the department and the University Graduate School of the decision on their applications.

Minor in Energy Systems

Fully enrolled non-mechanical engineering undergraduate students, who have at least a junior status with a cumulative FIU Grade Point Average of 2.0 or better, may apply to the department of Mechanical and Materials Engineering to request a minor in Energy Systems. To earn a minor in Energy Systems students must complete the 16 credit hours work listed below with a minimum grade of “C” in each course.

EGN 3311 Statics 1 3
EGN 3321 Dynamics 1 3
EGN 3343 Thermodynamics I 3
EML 3126 Transport Phenomena 1 3

1Students who have taken equivalent course/courses will be exempted from taking these courses. However, they need to select courses from the following list to satisfy the minimum requirement of 15 credit hours for the minor:

EML 3101 Thermodynamics II 3
EML 4706 Design of Thermal and Fluid Systems 3
EML 4601 Principles of Refrigerating and Air Conditioning 3

and

EML 4601L Refrigeration and A/C Lab 1
EML 4721 Introduction to Computational Thermo-Fluids 3

Minor in Engineering Science

Fully enrolled non-mechanical engineering undergraduate students, who have at least a junior status with a cumulative FIU Grade Point Average of 2.0 or better, may apply to the department of Mechanical and Materials Engineering to request a minor in Engineering Science. To earn a minor in Engineering Sciences students must complete the 16 credit hours listed below with a minimum grade of “C” in each course.

EGN 3311 Statics 1 3
EGN 3321 Dynamics 1 3
EGN 3365 Materials in Engineering 3
EMA 3702 Mechanics and Materials Science 1 3

and

EMA 3702L Mechanics and Materials Science Lab 1 1

or

EML 3126 Transport Phenomena 1 3
EML 3126L Transport Phenomena Lab 1 1
EGN 3343 Thermodynamics I 3

1Students who have taken equivalent course/courses will be exempted from taking these courses. However, they will need to select courses from the following list to satisfy the minimum requirement of 15 credit hours for the minor:

EML 3222 System Dynamics 3
EML 3500 Mechanical Design I 3
EML 4220 Mechanical Vibrations 3
EML 3101 Thermodynamics II 3
EML 4140 Heat Transfer 3

Minor in Mechanical Design

Fully enrolled non-mechanical engineering undergraduate students, who have at least a junior status with a cumulative FIU Grade Point Average of 2.0 or better, may apply to the department of Mechanical and Materials Engineering to request a minor in Mechanical Design. To earn a minor in Mechanical Design students must complete the 16 credit hours work listed below with a minimum grade of “C” in each course.

EGN 3311 Statics 1 3
EGN 3365 Materials in Engineering 1 3
EMA 3702 Mechanics and Materials Science 3

and

EMA 3702L Mechanics and Materials Science Lab 1
EML 3500 Mechanical Design I 3
EML 4501 Mechanical Design II 3

1Students who have taken equivalent course/courses will be exempted from taking these courses. However, they need to select courses from the following list to satisfy the minimum requirement of 15 credit hours for the minor:
Undergraduate Catalog

Course Descriptions

EML 2030 Software for Mechanical Design 3
EML 3XXX Simulation Software for Mechanical Engineers 3
EML 4350 Finite Element Analysis in Mechanical Design 3
EML 4804 Introduction to Mechatronics 3
EML 4806 Modeling and Control of Robots 3

Minor in Robotics and Mechatronics

Fully enrolled non-mechanical engineering undergraduate students, who have at least a junior status with a cumulative FIU Grade Point Average of 2.0 or better, may apply to the department of Mechanical and Materials Engineering to request a minor in Robotics and Mechatronics. To earn a minor in Robotics and Mechatronics, students must complete 16 credit hours of coursework listed below with a minimum grade of “C” in each course.

EGN 3311 Statics 3
EGN 3321 Dynamics 3
EML 3301L Instrumentation and Measurement Lab 1
EMA 3702 Mechanics and Materials Science 3
EML 4804 Introduction to Mechatronics 3
EML 4806 Modeling and Control of Robots 3

Some of these courses may require additional work listed below with a minimum grade of “C” in each course.

Students who have taken equivalent course/courses will be exempted from taking these courses. However, they need to select courses from the following list to satisfy the minimum requirement of 15 credit hours for the minor:

EML 2030 Software for Mechanical Design 3
EML 3XXX Simulation Software for Mechanical Engineers 3
EML 4312 Automatic Control Theory 3
EML 4503 Production Machine Design and Development 3
EML 4809 Robot Design 3
EML 4535 Mechanical Computer Aided Design 3

Professional Certificate Program

Heating, Ventilating and Air Conditioning Design

Yong X. Tao, Associate Professor and Coordinator

This Professional Certificate Program provides both traditional students and practicing professionals with a learning experience that enhances their design capabilities in the HVAC field. The program focuses on both basic engineering science and practical applications of system design. Interested applicants must contact the department chairperson or the coordinator prior to registering for the program.

The Certificate will be awarded to a student who successfully demonstrates competency in:

EGN 3343 Thermodynamics I 3
EIN 3354 Engineering Economy 3
EML 4601 Principles of Refrigerating and Air Conditioning 3
EML 4603 Air Conditioning Design 3
EML 4608C Mechanical Systems in Environmental Control 3

Some of these courses may require additional prerequisites or permission of the program coordinator.

Definition of Prefixes

EAS – Engineering; Aerospace
ECH – Engineering; Chemical
EGM – Engineering; Mechanics
EGN – Engineering; General
EML – Engineering; Mechanical
EMA – Engineering; Materials
ECH – Engineering; Chemical
EGN – Engineering; General
EML – Engineering; Mechanical

EAS 4105 Introduction to Flight Mechanics (3). An introductory level course on the fundamentals of aerospace engineering with emphasis on aerodynamics and airplane performance. Prerequisite: EML 3126.

ECH 3704 Principles of Industrial Electrochemistry (3). This course provides a discussion of the basic principles underlying various electrochemical processes. The emphasis is on theoretical principles involved in plating, refining, winning; aqueous and fused salts, primary, secondary and fuel cells. Prerequisite: CHM 3411.

ECH 4706 Engineering Application of Electrochemistry (3). The application of the electrochemical engineering principles to the analysis of industrial processes. Emphasis is placed on electrolysis in aqueous solutions and in fused salts; electrodeposition, electrowinning, and refining; electrochemical power systems. Prerequisite: ECH 3704.

ECH 4826 Corrosion Control (3). Various forms of corrosion, including pitting, stress, crevice, galvanic and microbial induced corrosion, are presented. The problems of material selection, failure analyses and corrosion control are discussed. Prerequisites: EGN 3365 and CHM 3411.

EGM 3311 Analysis of Engineering Systems (3). Statistics and probability analysis of materials and fluids experiments, structural and fluid system modeling and analysis using lumped parameters; numerical methods to find solutions. Prerequisites: MAP 2302 and EML 2032. Prerequisites: MAP 2302 and EML 2032.

EGM 3503 Applied Mechanics (3). Statics and dynamics of solids and fluids. Science of engineering materials. Open to non-mechanical engineering students only. Prerequisite: Permission of the instructor.

EGM 4350 Finite Element Analysis in Mechanical Engineering (3). Finite Element Analysis is developed as a means to determine stress and deformation levels as well as temperature and heat flux levels in solids. Application by means of commercial software. Prerequisites: CGS 2420 or CGS 2423, EML 4140 and EMA 3702.

EGM 4521C Material Science I (3). Course provides a more in-depth understanding of principles that determine material properties. Topics include structure, effects of thermodynamics, phase and kinetics on microstructural development. Prerequisite: EGN 3365.

EGM 4522C Materials Science II (3). Mechanical properties of materials, including strengthening plasticity and fracture. Introduction into ceramic and polymer materials systems. Prerequisite: EGN 3365.

EGM 4580 Principles of Bioengineering (3). Medical instrumentation and design, regulations for medical devices, application of computers in medicine, biomaterials, biocommunications, artificial implants, clinical engineering. Prerequisite: Permission of the instructor.
EGM 4580L Biomedical Engineering Lab (1). Introduction to the principles of biological signal measurements, biological data acquisition and image processing. Prerequisite: Permission of the instructor.

EGM 4581 Biomechanics of Cardiovascular Systems (3). Functional cardiovascular physiology and anatomy; analysis and computation of cardiovascular flow; constitutive properties of tissue; coronary and systemic circulation; flow and stress considerations in cardiovascular assist devices. Prerequisites: EMA 3702 and EML 3126.

EGM 4582 Engineering Hemodynamics (3). Fluid Mechanics of the circulatory system, rheology of blood, lubrication mechanics. Prerequisites: EML 3126 and EML 3126L.

EGM 4583 Orthopaedic Biomechanics (3). Introduction to the fundamentals of human musculoskeletal physiology and anatomy and computation of mechanical forces as it applies to orthopaedic biomechanics. Prerequisites: EGN 3321 and EMA 3702.

EGM 4610 Introduction to Continuum Mechanics (3). Introduction to modern continuum mechanics, mathematical preliminaries, stress and equilibrium, deformations and compatibility, constitutive equations, balance laws, problem solution strategies. Prerequisite: EMA 3702 EMA 3702.

EGM 5315 Intermediate Analysis of Mechanical Systems (3). First course at the graduate level in the analysis of mechanical systems. Modeling of the system and analytical and numerical methods of solution of the governing equations will be studied. Fluid and thermodynamic systems will be emphasized in this course. Prerequisites: EGM 3311, MAP 2302, or permission of the instructor.

EGM 5346 Computational Engineering Analysis (3). Application of computational methods to mechanical engineering problems of translational, rotational, control, thermal and fluid systems employing linear/nonlinear system elements. Prerequisites: EML 2032, MAP 2302, EML 3222, or permission of the instructor.

EGM 5354 Finite Element Method Applications in Mechanical Engineering (3). Utilize the finite element method to solve problems in heat transfer, fluid dynamics, diffusion, acoustics, vibrations, and electromagnetism, as well as the coupled interaction of these phenomena. Prerequisites: EML 2032, EMA 3702, and EML 4140.

EGM 5615 Synthesis of Engineering Mechanics (3). Unified approach to the analysis of continuous media using constitutive equations, mechanical behavior of materials and their usefulness in handling failure theories and composite materials. Prerequisites: MAP 2302 or EGM 3311, and EMA 3702.

EGM 5935 Review of Topics in Mechanical Engineering (4). To prepare qualified candidates to take the Mechanical Engineering PE written examination. Reviewed courses include: Thermodynamics, Fluid Mechanics, Mechanics of Materials, Mechanical Design and Heat Transfer.

EGN 1033 Technology, Humans, and Society (3). The course examines the interaction between the technology humans develop and their culture, politics and the quality of life. The foundation for envisioning the appropriate use of technology for a sustainable future is developed.

EGN 1100 Introduction to Engineering (2). This course will provide a broad exposure, “birdseye” view, of the engineering profession to entering freshmen.

EGN 1110C Engineering Drawing (3). Laboratory experiences in the principles and practice of idea development and expression through free hand sketching and conventional instrument drafting. A beginning course for students with no prior drafting experience.

EGN 3311 Statics (3). Forces on particles, and two and three dimensional rigid bodies, equilibrium of forces, moments; couples, centroids, section properties, and load analysis of structures; vector approach is utilized. Prerequisites: MAC 2312 and PHY 2048.

EGN 3321 Dynamics (3). Study of the motion of particles and rigid bodies, conservation of energy and momentum. A vector approach is utilized. Prerequisite: EGN 3311.

EGN 3343 Thermodynamics I (3). Fundamental concepts of basic thermodynamics including first and second law topics, equations of state and general thermodynamic relationships. Prerequisites: MAC 2312, PHY 2048, and CHM 1045.

EGN 3365 Materials in Engineering (3). A study of materials used in engineering. Includes atomic structure phase diagrams and reactions within solid materials. Prerequisites: CHM 1045, MAC 2311 and PHY 2048.

EGN 5367 Industrial Materials and Engineering Design (3). Industrial materials, material selection, and engineering design process, including synthesis, analysis, optimization, and evaluation.

EMA 3066 Polymer Science and Engineering (3). Introduction to molecular structure; property relationships; preparation, processing and applications of macromolecular materials. Prerequisite: EGN 3365.

EMA 3702 Mechanics and Materials Science (3). A mid-level course addressing the selection of engineering materials based on static and dynamic loadings, environmental analysis and the experimental analysis of mechanical systems. Emphasis on metals and composite materials. Prerequisite: EGN 3311.

EMA 4121 Physical Metallurgy (3). Correlation of properties; structural, mechanical, and thermal history and service behavior of various metals and their alloys. Prerequisite: EGN 3365.

EMA 4121L Materials Laboratory (1). Laboratory techniques in materials, including metallography, mechanical testing, heat treatment and non-destructive testing techniques. Prerequisite: EGN 3365.

EMA 4223 Mechanical Metallurgy (3). Fundamentals of plastic deformation of crystalline solids: elementary theory of statics and dynamics of dislocations; applications to deformation of single crystals and polycrystals; fracture of metals. Prerequisites: EGN 3365 and EMA 3702.

EMA 5001 Physical Properties of Materials (3). The physical properties of materials, including the influence of structure on properties, thermodynamics of solids and phase transformations and kinetics on microstructural development. Prerequisite: EGM 4521C.

EMA 5015 Introduction to Nanomaterials Engineering (3). The science and engineering of nanomaterials, the fabrication, behavior, and characterization of the nano-size particles and materials. Prerequisites: EGN 3365 Materials in Engineering, EGM 3311 Analysis of Mechanical Systems.

EMA 5016 Nanoelectronic Materials (3). Course provides an understanding of nanotechnology based on materials engineering. Topics include energy bands in semiconductors, MOSFET scaling, materials processing and other applications. Prerequisite: EGN 3365.

EMA 5017 Nanoparticle Technology (3). An interdisciplinary overview of the nanoparticle engineering. Synthesis of nanoparticles, nanoparticle growth and transport, characterization methods, and applications. Prerequisites: EGN 3365 or permission of the instructor.

EMA 5018 Nanoscale Modeling of Materials (3). Overview of computational nanotechnology. Modeling, simulation and design of nanomaterials. Energy minimization, molecular dynamics and advanced multiscale numerical techniques. Prerequisites: EGN 3365 or permission of the instructor.

EMA 504 Advanced Mechanical Properties of Materials (3). Advanced treatment of the mechanical behavior of solids; examines crystal plasticity, dislocations, point defects and grain boundaries, creep and fatigue behavior, fracture. Prerequisites: EGM 3311.

EMA 5140 Introduction to Ceramic Materials (3). Synthesis of ceramics, inorganic glasses and their microstructure as related to physical properties. Prerequisites: EGN 3365 or instructor’s permission.

EMA 5295 Principles of Composite Materials (3). The mechanical behavior of composite materials used in the automotive, aircraft and sporting goods industries. Material and laminar properties; design of composites; failure analysis; and environmental effects. Prerequisites: EGM 5615 or permission of the instructor.

EMA 5507C Analytical Techniques of Materials Sciences (3). Fundamental theories and techniques of the analytical methods for materials including: X-ray diffraction, scanning and transmission electron microscopy, thermal and surface analysis, and vacuum systems. Prerequisite: EGN 3365.

EMA 5594 Biomaterials Science (3). Materials used in prostheses for skin and soft tissue, vascular implant devices, bone repair, and artificial joints. Structure-property relationships for biological tissue. Prerequisites: EGN 3365, and EMA 3702.

EMA 5605 Fundamentals of Materials Processing (3). Extraction of materials from the minerals using pyro, hydro and electro techniques. Fundamentals of solidification process. Prerequisites: MSE 4521 or permission of the instructor.

EMA 5646 Ceramic Processing (3). Introduction to the science of ceramic processing, with emphasis on theoretical fundamentals and current state-of-the-art processing. Prerequisite: EMA 5140.

EMA 5935 Advanced Topics in Materials Engineering (3). Topics include thermodynamics of solids, principles of physical metallurgy, including phase transformation and diffusion and analytical methods in materials engineering. Prerequisites: EGN 3343 and EGN 3365.

EMC 5415 Digital Control of Mechanical Systems (3). Discrete modeling of mechanical systems. Digital feedback with emphasis on hydraulic, pneumatic and electro-mechanical devices. Prerequisite: EML 4312.

EML 1533 Introduction to CAD for Mechanical Engineers (3). Introduction to technical graphical visualization and communication for mechanical design; knowledge and skills to use a software package to create multi-view and 3-D Drawings using ANSI standards.

EML 2030 Software for Mechanical Design (3). Students will use software to develop solid models and a mathematical software package to solve mechanical engineering problems. A programming language will be used to define input parameters. Prerequisites: EGN 1100 or EML 3006, Corequisite: MAC 2313.

EML 2032 Programming for Mechanical Engineers Engineering (3). Operation of computers and programming languages for mechanical design. C++ will be used to develop programs for mechanical design problems. Introduction to Visual Basic and Fortran 90 environments.

EML 2XXX Simulation Software for Mechanical Engineers (3). Commercial software to reinforce the concepts of stress, deformation, fluid flow, rigid body dynamics, heat transfer and to optimize solid model designs via multi-disciplinary computational analysis. Corequisites: EMA 3702, EGN 3343, and EML 3126.

EML 3006 Concepts of Engineering (2). Provide a broad exposure, “birdseye” view, of the engineering profession to junior and senior transfer students. To be completed within two terms after admission to the ME program.
EML 3101 Thermodynamics II (3). Continuation of Thermodynamics I covering reactive and nonreactive mixtures and various thermodynamic cycles. Prerequisite: EGN 3343.

EML 3126 Transport Phenomena (3). Fundamental principles of transport phenomena; Governing Equations; Compressible Flow. Prerequisites: EGN 3321 or EGN 3343, and MAP 2302 or EGM 3311.

EML 3126L Transport Phenomena Laboratory (1). Experiments illustrating the principles of transport phenomena: wind tunnel, shock tubes, airfoils. Prerequisite: EGN 3321, Corequisite: EML 3126.

EML 3222 System Dynamics (3). Introduction to modeling of mechanical systems; derivation of system equations and response of fluid, thermal, and vibrational systems. Available solution methods will be discussed. Prerequisites: EGN 3321, EMA 3702, EML 2032.

EML 3262 Kinematics and Mechanism Design (3). Fundamentals of kinematics and mechanism design; study of the mechanisms used in machinery and analysis of their motion. Two and three dimensional analytical and numerical methods of computer application. Design is emphasized. Prerequisites: EGN 3321, EMA 3702, EML 2032.

EML 3301C Instrumentation (3). A practical study of common instrumentation techniques. The use of instrumentation and measurement methods to solve problems is emphasized. Prerequisites: EGN 3321, EMA 3702, EML 2032.

EML 3500 Mechanical Design I (3). Design of basic machine members including shafts, springs, belts, clutches, chains, etc. Prerequisites: EGN 3321, EMA 3702, and EGN 3365.

EML 4081 Introduction to Nondestructive Testing and Mechanical Health Monitoring (3). Nondestructive Testing (NDT) and Mechanical Health Monitoring (MHM) techniques will be introduced. Computational methods for interpretation of signals will be discussed. Prerequisite: Permission of the instructor.

EML 4140 Heat Transfer (3). Study of the fundamentals of heat transfer including conduction, convection, and radiation. Computer applications and design problems emphasized. Prerequisites: EML 2032, EGN 3343, EML 3126, and MAP 2302.

EML 4220 Mechanical Vibrations (3). Theory and application of mechanical vibrations. Includes damped and undamped vibrations with one or more degrees of freedom computer methods emphasized. Prerequisites: EGN 3321, EMA 3702, and EML 2032.

EML 4246 Tribological Design for Machines and Elements (3). Introduction to friction and wear, analysis of tribological systems, and applications of Tribological Principles to machine and machine element design. Prerequisites: EML 4501 or permission of the instructor.

EML 4260 Dynamics of Machinery (3). Acceleration and force analysis of reciprocating and rotating mechanisms and machines. Dynamic balancing of idealized systems. Torsional and lateral critical speeds of a rotor and self-excited instability. Prerequisite: EML 3262.

EML 4264 Introduction to Vehicle Dynamics (3). Fundamentals of dynamics applied to the study of automotive vehicle performance. Emphasis will be placed on the use of models to evaluate or improve vehicle design. Prerequisite: EGN 3321.

EML 4312 Automatic Control Theory (3). Feedback control systems; stability analysis; graphical methods. Applications with emphasis on hydraulic, pneumatic and electro-mechanical devices. Prerequisites: EGN 3321, MAP 2302, EML 2032.

EML 4410 Combustion Processes (3). Introduction to combustion processes, thermochemistry, chemical kinetics, laminar flame propagation, detonations and explosions, flammability and ignition, applications in IC engines and gas turbines. Prerequisites: EML 3101 and EML 4140.

EML 4501 Mechanical Design II (3). Continuation of design analysis of elementary machine elements, including lubrication bearings, and gearings. Introduction to advanced analysis techniques. Prerequisite: EML 3500.

EML 4503 Production Machine Modeling and Design (3). The modeling of metal removing, forming, and polymer processing operations will be introduced. The design of production machines will be discussed based on the models. Prerequisites: EGN 3365, EMA 3702, and EIN 3390.

EML 4535 Mechanical Computer Aided Design (3). Introduction to the use of computers in the design process. Course emphasizes the use of interactive computing and computer graphics in developing CAD applications. Programming project is required. Prerequisite: EML 2032.

EML 4551 Design Project Organization (1). Organization to include problem definition, goals, survey, conceptual and preliminary design, ethics and cost components, social and environmental impact, presentation to enhance communication skills. Corequisites: EML 3101, EGM 3311, EML 3500, and EML 4140.
EML 4561 Introduction to Electronic Packaging (3). Introduction to mechanical packaging of electronic systems. Integrates concepts in mechanical engineering to the packaging of electronic systems, such as hybrid microelectronics. Prerequisites: EEL 3003 or EEL 3111, and EEL 3111L.

EML 4585 Design of Biomedical Systems and Devices (3). Mechanical design and material choices of various biomedical systems and devices such as cardiovascular assist devices, total artificial heart, pulmonary assist devices, total hip prosthesis and other orthopaedic devices. Prerequisites: EGN 3365, EMA 3702, EML 3126 or permission of the instructor.

EML 4601L Refrigeration and Air Conditioning Lab (1). Experiments in Air Conditioning and Refrigeration applications. Corequisite: EML 4601.

EML 4603 Air Conditioning Design (3). Mechanical design and optimization of an air conditioning system for a selected application including comfort, industrial applications, building operation and management. Design project required. Prerequisites: EML 3101 and EML 4140 or permission of the instructor.

EML 4608C Mechanical Systems in Environmental Control (3). Analysis of refrigeration, heating and air handling systems. Design of environmental control systems. Prerequisite: EML 3101.

EML 4702 Fluid Dynamics (3). A mid-level course on ideal fluid flow, compressible flow and viscous flow. Analysis and numerical techniques of continuity and Navier-Stokes equation for incompressible and compressible flow. Prerequisite: EML 3126.

EML 4706 Design of Thermal and Fluid Systems (3). Design of thermal and fluid systems and components. Piping networks, duct works. Selection of pumps and fittings. Basic design of heat exchangers, turbomachinery, pumps, and fans. Prerequisites: EML 3101 and EML 4140.

EML 4711 Gas Dynamics (3). Basic equations of motion for the flow of a compressible fluid, isentropic flow, normal and oblique shock waves, linearized flows method of characteristics and supersonic thin-air foil theory. Prerequisites: EML 3126 and EGN 3343.

EML 4721 Introduction to Computational Thermo-Fluid (3). Introduction of numerical methods for compressible and incompressible flows and heat transfer. Topics include explicit and implicit schemes, accuracy and stability in different coordinate systems. Prerequisites: EML 2032 (equivalent or permission by instructor), EGM 3311 (or equivalent), EML 3126. Corequisite: EML 4140.

EML 4804 Introduction to Mechatronics (3). This course will introduce computer controlled precise motion generation in smart machines. Prerequisite: EML 3301L.

EML 4809 Robot Design (3). Robotic arm and mobile platform design including a review of major design components such as actuators, sensors, and controllers. Computer-based design, analysis and hands-on projects. Prerequisites: EML 4806 or permission of the instructor.

EML 4823 Introduction to Sensors and Signal Processing (3). This course will introduce the basic sensors and signal processing techniques for design and development of smart products. Prerequisite: EML 3301L.

EML 4905 Senior Design Project (3). Project statement, in-depth survey, conceptual and structural design, analysis, statistical and cost analyses, ethical, societal and environmental impact, prototype construction, final presentation. Prerequisites: EML 4551 and permission of the advisor. Corequisites: EML 4501, EML 4706.

EML 4906L Mechanical Lab (1). Experiments with various types of mechanical equipment including engines, fans, boilers, pumps, motions and mechanics. Prerequisites: EGN 3343 and EML 3126.

EML 4930 Special Topics/Projects (1-3). Individual conferences, assigned readings, and reports on independent investigations selected by the students and professor with approval of advisor.

EML 4949 Co-op Work Experience (3). Supervised full-time work experience in engineering field. Limited to students admitted to the Co-op program with consent of advisor. Evaluation and reports required.

EML 5XXX Professional Development and Leadership for Mechanical Engineers (3). Consequences of engineering and concepts of personal career management, decision making, leadership and intrapreneuring that enhance the effectiveness of professional engineering practice. Prerequisite: Senior standing in engineering.

EML 5XXX Special Projects in Mechanical Engineering Design and Business Development (3). Mechanical engineering design project that encompasses conceptual and structural design, analysis and optimization complemented by a study to develop a business venture to produce the designed product. Prerequisites: EML 4501 or equivalent, QMB 6357, and MAN 6209.

EML 5082 Advanced Nondestructive Testing and Mechanical Health Monitoring (3). Theory and application of Nondestructive Testing (NDT) and Mechanical Health Monitoring (MHH) techniques will be discussed. Automated interpretation of signals and advanced methods will be presented. Prerequisite: Permission of the instructor.

EML 5103 Intermediate Thermo Dynamics (3). Thermodynamic approach to processes and engines; alternative formulations and legendre transformations; maxwell relations, first and second order phase transitions. Prerequisite: EML 3101.
EML 5104 Classical Thermodynamics (3). Mathematical analysis of the laws of classical reversible and irreversible thermodynamics. Applications to mechanical, electromagnetic, and chemical systems. Prerequisite: EML 3101.

EML 5385 Identification Techniques of Mechanical Systems (3). FFT, time series analysis and neural networks are introduced. Applications of these techniques are discussed for identification of mechanical structures and machine diagnostics. Prerequisite: EML 4312.

EML 5412 Combustion Processes (3). Introduction to combustion processes, thermochemistry, chemical kinetics, laminar flame propagation, detonations and explosions, flammability and ignition, applications in IC engines and gas turbines. Prerequisites: EML 3101 and EML 4140.

EML 5509 Mechanical Design Optimization (3). Finite element analysis and sensitivity analysis combined with numerical optimization techniques to optimize design. Prerequisites: EGM 5354 or permission of the instructor.

EML 5505 Smart Machine Design and Development (3). Design of independently operating smart electromechanical systems (most consumer products) which monitor their environment, give decisions, and create motion. Prerequisites: EML 4312 or consent of the instructor.

EML 5519 Fault-Tolerant System Design (3). Fault tolerance in mechanical, manufacturing, computer, and aerospace systems. Basic stages of fault isolation. Fault tolerance measures, architectures, and mechanical system design methodologies. Prerequisite: EML 3500.

EML 5528 Digital Control of Mechanical Systems (3). Discrete modeling of mechanical systems. Digital feedback systems. Computer interface with mechanical systems. Controller design with emphasis on hydraulic, pneumatic and electro-mechanical devices. Prerequisite: Permission of the instructor.

EML 5530 Intermediate Computer-Aided Design/Computer-Aided Engineering (3). Computer-aided geometrical modeling of spatial mechanical systems. Design criteria and analytical approaches for planer kinematic systems will be emphasized. Prerequisites: EML 4535 or permission of the instructor.

EML 5562 Advanced Electronic Packaging (3). Advanced topics in electronic packaging. Evaluation of first through fourth level assembly. Applications of computer layout design, thermal management and mechanical stability analysis. Prerequisites: EML 4561 or permission of the instructor.

EML 5599 Heat Pipe Theory and Applications (3). Heat pipe theory, heat pipe design and its applications, especially in the areas of energy conversion and conservation. Prerequisites: EML 3101 and EML 4140.

EML 5606C Advanced Refrigeration and Air Conditioning Systems (3). The various methods used in the thermal design and analysis of both refrigeration and heat pump systems are investigated. Various methods of producing heating and cooling are examined including vapor compression, absorption, air cycle, steam jet, thermoelectric, solar heating and cooling systems. Prerequisite: EML 4601.

EML 5615C Computer-Aided Design in Air Conditioning (3). Software will be used to demonstrate heating, ventilating and air conditioning design concepts and sizing equipment & determining performance parameters. Project design is required. Prerequisites: EML 2032 and EML 4601.

EML 5708 Advanced Design of Thermal and Fluid Systems (3). Advanced designs of pumps, compressors, heat exchangers, HVAC systems and thermal and fluid control devices. Prerequisite: EML 4706.

EML 5709 Intermediate Fluid Mechanics (3). Basic concepts and scope of fluid dynamics; non-inertial reference frames. Two-dimensional potential theory. Applications to airfoils. The Navier-Stokes equations; selected exact and approximate equations. Prerequisite: EML 3126.

EML 5748 Boundary Layer Theory (3). Advanced fluid dynamic analysis of the Navier - Stokes equations, using boundary layer assumptions. Focus will be on solutions of thermal and fluid boundary layers. Prerequisite: EML 3126.

EML 5825 Sensors and Applied Machine Intelligence (3). Sensors, signal analysis techniques, and error compensation methods will be introduced for machine intelligence. Prerequisites: EML 4312, EML 4503, or equivalent, or permission of the instructor.

EML 6908 Independent Studies (1-3). Individual research studies available for qualified graduate students. The work is to be performed under the supervision of an advisor. A report is to be submitted. Students may register for 1 to 3 credits per semester. Prerequisite: Advisor’s permission.
Rationale for Changes:

NOTE: Not all changes that were previously approved by the university curriculum committee are shown here. Especially the recent course prerequisite changes are not reflected.

1. Title update.
2. Title update.
3. Title update.
4. Revision of departmental objectives (addition of the new set and deletion of the old).
5. Revision of departmental outcomes (addition of the new set and deletion of the old).
6. Delete the word “three”.
7. Add the word “Robotics” to better describe the major area.
8. Delete the sentence as in light of the available number of electives.
9. Delete “Software for Mechanical Design” as the course is no longer a required core course.
10. Delete the phrase which is no longer valid and introduce the course “Introduction to CAD for Mechanical Engineers” as indicated.
11. Update of the passing grade.
12. Update the college title to “College of Engineering and Computing” as required.
14. Update of the approved list of design electives: Newly approved courses are replaced by other courses which do not fit well with the ABET design course content requirements.
16. Replace “four” by “three” as there are three concentrations in the department.
17. Mechanics, Materials and Design area elective course update to reflect the latest available courses.
18. Correction on concentration area title: “Design, Robotics and Manufacturing” to be consistent with the previous references. New courses are added to the list of available electives.
19. Update the number of elective credits that must be taken to “nine” instead of “eleven” as indicated.
20. Delete the superscript 1, and incorporate the course lineup change as approved earlier by the department.
21. Insert a “narrow” blank line at the end of the Eighth Semester course list as indicated.
22. Delete the text describing the “BSME/MSME Degree Program.”
23. Insert the section titled “Combined Bachelor’s/Master’s (BS/MS) Program” which replaces the above section (in item 22). This brings the description in line with the latest university policy on combined programs.
24. Insert the description of “Combined BS/MBA Program” as approved separately.
25. Update of course descriptions. This includes deletion of a number of biomedical engineering courses since their prefixes were changed to BME and they are being taught by the biomedical engineering department. New course proposals for EML 3XXX and two EML 5XXX courses were approved by the curriculum committee separately.
26. Include a period at the end.
27. Course title for EML 2032 was approved as “Programming for Mechanical Engineers” not as “Programming for Mechanical Engineering” as it appears.
28. This course is included since it is referred to in the “Combined BS/MBA Program” description.